
NAIS-Documentation-HOWTO

Mattias Gärtner gaertner@informatik.uni-koeln.de , Lech Nieroda nieroda@informatik.uni-koeln.de , Jens
Rühmkorf ruehmkorf@informatik.uni-koeln.de . v.0.1, June 2000

This document describes how to automatically install a PC Cluster with Linux via network using NAIS. It is a
step-by-step guide that explains the set-up of the needed services on your server and what part on the client side
is required.

Contents

1 Introduction 2

1.1 Disclaimer and Copyright . 2

1.2 Intended Audience and Applicability . 2

1.3 Features . 3

1.4 Wishlist . 3

1.5 New versions of NAIS and this document . 4

1.6 Feedback and corrections . 4

2 Quick-Installation-Guide 4

3 Setting up the server 4

3.1 The TFTP daemon . 5

3.2 The NFS daemon . 6

3.3 The DHCP daemon . 6

3.3.1 Preliminaries . 6

3.3.2 Con�guring DHCPd . 6

3.3.3 Starting the daemon . 10

4 Setting up the client's resources 10

4.1 How to create a reasonable client kernel . 11

4.2 How to create install-root �lesystem . 12

4.2.1 Customizing util.conf and mk_root . 12

4.2.2 Making the installroot �lesystem . 12

4.2.3 Installing additional packages . 13

4.3 How to create the Initial RAM disk . 13

4.3.1 ... and why do we need it ? . 13

4.3.2 Customizing util.conf and mk_initrd . 14

4.3.3 Making the initrd (minimal root �le system) . 14

4.3.4 Benediction . 16

1. Introduction 2

4.3.5 ...and what does the linuxrc script do anyway? . 16

5 How the client boots 16

5.1 Booting from �oppy . 16

5.1.1 syslinux . 16

5.1.2 lilo . 17

5.2 Booting from network card . 17

5.2.1 etherboot and netboot . 18

5.2.2 Using PXE boot-PROMs . 19

6 The installation process, 1st part 22

7 The installation process, 2nd part 22

8 How con�guring works 22

9 Resources 22

10 Acknowledgements 23

11 Disclaimer and Copyright 23

12 Glossary 24

1 Introduction

For people who are involved in administrating networks of Linux computers installing or con�guring com-
puters is an everyday task. Whenever manual interaction is involved to set up and con�gure a computer, it
is likely that you miss something which will lead to mistakes. Moreover, it is rather boring to perform the
same task again and again. Thus it is clear that a system that lets you perform a non-interactive, network
based automatic installation will surely save you a lot of time in the long run. That is what NAIS lets you
do for ix86-architectures.

1.1 Disclaimer and Copyright

This document is Copyright c© 2000 by Mattias Gärtner, Lech Nieroda and Jens Rühmkorf. Please see
section 11 (Disclaimer and Copyright) at the end of this document for information about redistribution of
this document and the usual `we are not responsible for what you manage to break...' type legal stu�.

1.2 Intended Audience and Applicability

Most Linux users should never have to even look at this document because many Linux distributions do a
pretty good job at aiding the user to set up and con�gure his system. The information in this document
is aimed at users who have experience with administrating Linux machines and wish to set up a network

1. Introduction 3

automatic installation system using Debian GNU/Linux as distribution. Everything is ONLY tested to work
for ix86-architectures.

1.3 Features

Just a short list of features NAIS has we thought an automatic installation system should have. Feel free to
mail us if you miss something:

• The Linux distribution you use for your server does not need to be Debian GNU/Linux or even potato;
we have set up a fully functional server system on SuSE 6.3 as well as on Debian GNU/Linux 2.1 using
the same scripts.

• You can use the same kernel for installation that you use for running the client. The kernel just needs
ramdisk- and initrd-support compiled in as well as the network device support to work.

• The use of initrd makes it possible to automatically install clients with "unusual" network interfaces,
such as PCMCIA, whose support cannot be compiled into the kernel yet. NOTE: The initrd.gz we
use does not support PCMCIA as it is, you have to add the needed binaries and modules yourself to
make it work.

• There is no second reboot required � pretty much the same like some other distributions do it.

• Uses a convenient "class" concept for con�guring.

• The tool setup_harddisks lets you specify general rules for partitioning and formatting the client's
local hard disks; preserving already created partitions is possible as well.

• All parameters are passed to the client using DHCP.

• We took care to keep everything RFC-compliant so you should be able to use etherboot, netboot,
pxelinux or BpBatch to boot over network.

• A sysinfo mode that just gathers some signi�cant information about the client and gives you a shell
(remember, telnet client 2323 instantly reboots the client, so you can care less about the shell).
Other modes possible but not implemented yet.

• The sysinfo and install mode let you establish a secure terminal session to the "install-client" using
ssh (once sshd is up and running). Idea from Thomas Gebhardt.

• You can request your client via tcp to reboot, at any time, in case the installation fails. Gets quite
handy when the client you want to install is 400 meters away ;)

If you just started reading this document, some of these features might not be clear to you. They will be
explained in detail in the following sections.

1.4 Wishlist

Just some features we thought an automatic installation system should have which we did not have the time
or resources to implement yet.

• A backup mode.

• Better debconf support. So far we only use debconf's feature to run apt in "non-interactive" mode.

• Adapt setup_harddisks to work with reiserfs.

2. Quick-Installation-Guide 4

• Make a debian package of NAIS.

• We did not have time to add support for etherboot yet, only netboot works as well as pxelinux and
BpBatch.

• Not concerning NAIS but still important: There happens to be no debian package for etherboot yet
(but for netboot there is one). Hmm. Time to become a debian package maintainer.

• Make an anonymous (pserver) CVS repository available for those who want to have the latest and
greatest ;)

1.5 New versions of NAIS and this document

You can always �nd the latest version of NAIS as well as the most recent version of this document on the
World Wide Web via the URL <http://www.informatik.uni-koeln.de/nais/> .

1.6 Feedback and corrections

If you have questions or comments about this document, please feel free to mail us at nais@informatik.uni-
koeln.de. We welcome any suggestions or criticisms. If you �nd a mistake within this document or experience
any problems using NAIS, please let us know so we can correct it in the next version. Thanks.

2 Quick-Installation-Guide

Not yet, sorry. But all necessary information can be found in the other sections. Just no quick guide for the
impatient :(

3 Setting up the server

The server works as a repository. The clients will need to access server ressources in order to boot, install
packages and so on. To achieve this, various network services must be properly set up.

Most �les required for the installation are located under /files/install . The nais directory contains all
con�guration �les as well as scripts and required utilities.

vermeer[~]# tree -d -L 2 /files/install/nais/

/files/install/nais/

|-- config

| |-- class

| |-- disk

| |-- env

| |-- files

| |-- package

| -- scripts

|-- install

| |-- init.d

| |-- rc0.d

| -- rc1.d

-- utilities

|-- busybox

3. Setting up the server 5

|-- cmos

|-- install_packages

|-- kiss

|-- mk_initrd

|-- mk_mbaimg

|-- mk_root

`-- setup_harddisks

The installroot directory contains a root �lesystem based on Debian's base2_2.tgz. It will be mounted
by the clients during installation, providing a basis for their respective �lesystems.

vermeer[~]# tree -d -L 2 /files/install/installroot/

/files/install/installroot

|-- bin

|-- boot

|-- busybox

|-- cdrom

|-- debian

|-- dev

|-- etc

|-- floppy

|-- home

|-- initrd

|-- kiss

|-- lib

|-- mnt

|-- proc

|-- root

|-- sbin

|-- tmp

|-- usr

-- var

Now we can set up the network daemons.

3.1 The TFTP daemon

A client should boot from its network card or �oppy. In order to boot via the network card, the TFTP
service must be installed on the server.

A �rst step is to add or uncomment the following lines from /etc/inetd.conf:

tftp dgram udp wait.240 nobody /usr/sbin/tcpd /usr/sbin/in.tftpd /tftpboot

Note: the directory /tftpboot will be used as a repository for the kernel and the ramdisk image the client
will boot from After changing this �le, inetd must update its con�guration. To achieve this, it must be killed
and restarted (the HUP option):

vermeer[~]# killall -v -HUP inetd

Killed inetd(15086)

In case your linux distribution doesn't have the command killall, which kills processes by name, you can
use kill with the appropriate process id as well.

3. Setting up the server 6

3.2 The NFS daemon

The clients access all server resources via NFS. To enable NFS service, rcp.nfsd and rpc.mountd daemons
must be started. Debian achieves this by executing the nfs-server script, which is located in /etc/init.d.
The clients are only able to mount exported directories. Alter the /etc/exports accordingly :

vermeer[~]# cat /etc/exports

/files/install 134.95.10.128/255.255.255.128(ro,no_root_squash)

/debian 134.95.10.128/255.255.255.128(ro,root_squash)

3.3 The DHCP daemon

The main function of the DHCP server is to give the client an IP adress and to make it load the �le
named bpbatch.P from the TFTP server. Note: DHCP is a superprotocol over BOOTP. The installation
and con�guration of DHCP has been well documented in the <http://linuxdoc.org/HOWTO/mini/DHCP/> .
Refer to it for details.

3.3.1 Preliminaries

First of all, you should check whether your kernel does have MULTICAST support enabled. You can do so
by typing:

vermeer[~]# ifconfig -a

.

.

eth0 Link encap:Ethernet HWaddr 00:50:DA:41:E0:1C

inet addr:134.95.10.140 Bcast:134.95.10.255 Mask:255.255.255.0

UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1

On most systems this option is already set.

DHCPd stores information about current leases in a �le named dhcpd.leases. It is in plain text format, so
you can view it during DHCPds operations. You will propably have to create it; type:

touch /var/state/dhcp/dhcpd.leases

Older versions of dhcpd (<2.0) store this �le as /etc/dhcpd.leases

3.3.2 Con�guring DHCPd

All options for the DHCP deamon can be set in the /etc/dhcpd.conf �le. If you are using KDE 2.0 you
can try kcmdhcpd - a graphical interface for dhcpd con�guration, very similar to the Windows NT DHCP
con�gurator.

If you are using a PXE boot-PROM, add the following lines :

option dhcp-class-identifier "PXEClient"

option vendor-encapsulated-options ff;

The dchpd.conf consists of two main parts.

• global options

• bootmethod speci�c options

3. Setting up the server 7

Setting the global options Here is an excerpt of our dhcpd.conf, containing the global options. All
option tags (e.g. option-211) have corresponding environment variables (e.g. ${NAIS_ACTION}). Adjust
them to your needs as you see �t. Note: the global parameters can be overwritten by speci�c options if
needed; all comments are preceded by a #.

${NAIS_ACTION}

NAIS can do more than installing a client :) Possible options:

#

install -- install the system

sysinfo -- fetch all hardware information and write it to logs

bash -- start a bash

option option-211 "bash";

${NAIS_PATH}

NAIS will be mounted during installation via nfs

from the dhcp server (see statement "server-name" below).

This is its directory.

option option-212 "/files/install/nais";

${NAIS_ROOTPATH}

After successful booting and extracting the ramdisk

containing the miniroot system, NAIS mounts this

directory from the dhcp server. The needed binaries,

libraries and such are taken from this directory;

it is actually a debian base with some additional

packages.

option option-213 "/files/install/installroot";

${NAIS_TFTPLINK}

After installation NAIS switches the boot method (e.g.

to boot from harddisk. To do this easily the bootfile

is only a link which will be switched after installation.

option option-214 "hdboot.bpb";

${NAIS_BOOTMETHOD}

The boot method. Current values are "bpbatch", "pxelinux",

"netboot" and "etherboot".

option option-215 "bpbatch";

${NAIS_FLAGS}

Some flags for the general behaviour of NAIS

"verbose" increase output

"debug" write every line of code

"keep_bootmethod" normally the client changes the boot

method after the installation to boot from its

harddisk. This flag deactivates this feature so

that every time the client reboots it will be

reinstalled.

"no_reboot_daemon" do not start the reboot daemon "kiss".

"reboot" normally NAIS installs without rebooting. With this flag

the client reboots after installation.

"paranoid" interactive mode, for those who don't have trust

in our **automatic** installation ;)

NOTE: Obviously combinations like "reboot" and "keep_bootmethod"

don't make much sense. Nevertheless they are possible.

3. Setting up the server 8

option option-216 "keep_bootmethod verbose";

${NAIS_USER}: account on tftp and log-server

Used to save all log-files to server and to change image which is

booted via network. For this to work you need to configure this user's

.rhost, so root can login from all install clients without password.

As well, this account must have write permissions for /tftpboot.

#

Note: To achieve this we granted write permissions for /tftpboot to

the group linuxadm, which NAIS_USER is member of.

chgrp linuxadm /tftpboot; chmod g+w /tftpboot

option option-217 "nais";

${NAIS_LOGSERVER}

NAIS saves at the end of every phase all logfiles to this server

using the account NAIS_USER via rsh/rcp.

option option-218 "134.95.10.140";

${NAIS_BINSERVER

Server from which to mount bin-trees like /usr etc. Only useful

for lean-clients. To use it, you have to define a class USR_MOUNT

or USR_LOCAL_MOUNT.

option option-219 "134.95.10.140";

${NAIS_HOMESERVER}

Server from which to mount /home. Only useful if you define a

class named HOME_CLIENT

option option-220 "134.95.10.140";

${DEBIAN_NFS_LOCATION}

Packages are installed with APT and debconf. APT can fetch

the debian packages via nfs, http or ftp. If some of your

client use nfs you must tell NAIS the path.

option option-221 "134.95.10.140:/debian";

${NAIS_SEARCH}

Additional values for search list in resolv.conf.

E.g. if you want your resolv.conf to look like

-- snip --

search informatik.uni-koeln.de uni-koeln.de

-- snap --

you have to define this to be "uni-koeln.de".

Otherwise, leave it empty.

option option-222 "uni-koeln.de";

allow booting;

allow bootp;

deny unknown-clients;

default-lease-time 60;

max-lease-time 70;

#

It is important to get hostnames as well (not only ip)

because we let NAIS use hostnames instead of ip adresses.

#

3. Setting up the server 9

use-host-decl-names on;

The bootp �ag (allow bootp;) tells dhcpd to respond to bootp queries.

These options are global but speci�c to our network:

server-name "134.95.10.140";

option domain-name "informatik.uni-koeln.de";

option domain-name-servers 134.95.100.209, 134.95.100.208, 134.95.140.208;

option time-servers vermeer;

option ntp-servers 134.95.99.254, 134.95.110.33, 134.95.111.13;

option nis-domain "pinguine";

option nis-servers vermeer;

option subnet-mask 255.255.255.0;

subnet 134.95.10.0 netmask 255.255.255.0 {

option routers 134.95.10.254;

}

The server will advise the client to use 255.255.255.0 as its subnet mask, 134.95.10.254 as the router/gateway
and 134.95.100.209, 134.95.100.208, 134.95.140.208 as its DNS servers.

Setting the bootmethod speci�c options Decision time. Now you can choose from the following
bootmethods:

• PXElinux

• BpBatch

• Netboot

• Etherboot (caution: this option has not been tested yet)

This is a sample con�guration of a client using PXElinux.

option option-215 "pxelinux"; # NAIS_BOOTMETHOD

option vendor-encapsulated-options 09:0f:80:00:0c:4e:65:74:77:6f:72:6b:20:62

:6f:6f:74:0a:07:00:50:72:6f:6d:70:74:06:01:02:08:03:80:00:00:47:04:80:00:00

:47:04:80:00:00:00:ff;

filename "/tftpboot/pxelinux.bin";

option option-211 "install"; # NAIS_ACTION

host roy00 {

hardware ethernet 00:10:5A:25:DB:BA;

fixed-address 134.95.10.160;

option option-214 "865F0AA0"; # NAIS_TFTPLINK

}

This will result in DHCP server giving a client (roy00) a speci�c IP adress (134.95.10.160) based on its
ethernet adress (00:10:5A:25:DB:BA).

You can mix these methods, like assigning 'static' IP adresses to certain clients and dynamic IPs to mobile
users (laptops). For further options refer to the dhcpd.conf(5) man page.

When using BpBatch, you will have to create appropriate con�guration �les. They are usually di�erent for
each client and describe which kernel and ramdisk will be loaded. Note: these �les do have a .bpb extension,
but only their basename has to be written here.

4. Setting up the client's resources 10

option option-215 "bpbatch"; # NAIS_BOOTMETHOD

option option-214 "hdboot.bpb"; # NAIS_TFTPLINK

filename "/tftpboot/bpbatch";

option option-211 "install"; # NAIS_ACTION

host roy00 {

hardware ethernet 00:10:5A:25:DB:BA;

fixed-address 134.95.10.160;

option option-135 "/tftpboot/roy00"; # bpbatch config file (roy00.bpb)

}

The netboot method doesn't di�er much from the preceding one:

option option-215 "netboot"; # NAIS_BOOTMETHOD

always-reply-rfc1048 on;

option option-211 "install"; # NAIS_ACTION

option option-129 "reboot=warm"; # kernel parameters

host roy00 {

hardware ethernet 00:10:5A:25:DB:BA;

fixed-address 134.95.10.160;

filename "/tftpboot/roy00";

}

Etherboot. This method has not been tested or even implemented yet, proceed with caution.

option option-215 "etherboot"; # NAIS_BOOTMETHOD

option option-211 "install"; # NAIS_ACTION

host roy00 {

hardware ethernet 00:10:5A:25:DB:BA;

fixed-address 134.95.10.160;

filename "/tftpboot/roy00";

}

3.3.3 Starting the daemon

In order to start the DHCP server just type

/usr/sbin/dhcpd

When running dhcpd for the �rst time, you might want to use the options -d -f to enable debugging
messages and put them on the server console. Boot your client and check the result. If everything works out
�ne you have made it.

4 Setting up the client's resources

This section explains how the client's resources are set up on your server. First of all, an install-client
is supposed to boot from its network card, thus the DHCP, NFS, and TFTP services should be installed
and properly set up on your server(s), refer to section 3 (Setting up the server) for details. Although the
installation is based on the Debian GNU/Linux "potato" release, it can be employed on a server running
di�erent linux distributions as well; we have set up a fully functional server system on SuSE 6.3 as well as
on Debian GNU/Linux 2.1 using the same scripts.

To give you a brief overview of the installation process:

4. Setting up the client's resources 11

1. The client boots via the network (see section 5 (How the client boots) for details). Then, the net-
boot loader loads the kernel bzImage and the initial RAM disk image initrd.gz. (By changing this
initrd.gz additional modules can be loaded as well e.g. to enable PCMCIA support.)

2. The ash-script /linuxrc is executed (in fact, this can be any valid executable; it is run with uid 0 and
can do basically everything init can do):

• The dhclient tries to con�gure the network interfaces that are con�gured in the system and asks
for additional options (especially vendor tags) using DHCP protocol.

• Our "reboot daemon" kiss is started, usually listening on port 2323. Thus, a telnet client

2323 will imediately reboot the client (unless the installation has already �nished).

• The binaries and libraries, server:/some_path/installroot/ , as well as NAIS' base directory,
server:/some_path/nais/ , with further scripts and con�guration �les are mounted readonly
from the server.

• Theoretically linuxrc is still running but practically it forks a bash-script via NFS from the
server to do the rest. Everything else is now beyond the scope of linuxrc.

• The client's hardware (especially its hard disk) is set up and a Debian GNU/Linux base system
is installed and con�gured.

3. As linuxrc terminates, the "real" root �le system (e.g. /dev/hda1/) is mounted and the 2nd part of
the installation begins: The left packages are installed and con�gured.

4. kiss is stopped.

5. Installation is completed!

4.1 How to create a reasonable client kernel

The kernel compilation procedure is documented extensively by various documents; in case of trouble you
might want to refer to Kernel-HOWTO <http://linuxdoc.org/HOWTO/Kernel-HOWTO.html> or the kernel's
Documentation/-directory for example.

For building a linux kernel suitable for installing and running a client choose appropriate options and drivers
that match your client's hardware con�guration (e.g. hard disks, cdrom etc.). Note: if you can avoid using
modules to support your clients hardware devices, do so - that will simplify your further tasks; you will need
them for PCMCIA though.

Furthermore, the kernel needs following features built-in:

• Network device support (CONFIG_NETDEVICES=y) for the clients NIC.

• NFS �lesystem support.

• Initial ramdisk (and therefore ramdisk) support.

• Packet protocol (CONFIG_PACKET=y) and Linux socket �lter (CONFIG_FILTER=y).

• Any other low-level drivers necessary to detect and use the client's hardware.

If you think you missed something take a look at the kernel-con�g �les that come with NAIS. Also, when
compiling the modules remember to set the environment variable ${INSTALL_MOD_PATH}:

4. Setting up the client's resources 12

vermeer[/usr/src/linux]# setenv INSTALL_MOD_PATH /tmp

vermeer[/usr/src/linux]# make modules modules_install

.

.

Installing modules under /tmp/lib/modules/2.2.16/block

Installing modules under /tmp/lib/modules/2.2.16/fs

Installing modules under /tmp/lib/modules/2.2.16/misc

4.2 How to create install-root �lesystem

The install-root �lesystem is based on Debian's base2_2.tgz. Propably, it will have to be made only once.
It will be mounted read only by the clients during the installation, thus being the basis of their respective
�lesystems. It is quite easy to create the root �lesystem with Debian.

4.2.1 Customizing util.conf and mk_root

Edit the two �les util.conf and mk_root in this directory. Both contain numerous comments which should
explain in detail the options you are asked to set. You should look through util.conf and mk_root and check
the variable settings.

util.conf

This �le contains basic informations about your server and various (remote and local) �le locations.
Review the PACKAGES variable carefully - it enumerates the packages to be installed in the installroot.
Make sure you specify the INSTALL_ROOT - that is where your installroot will be created

mk_root

This script speci�es how your installroot will be built and what it will contain.

4.2.2 Making the installroot �lesystem

Make sure you don't run the script from your root directory ("/"). In case this happens by accident, the
script will exit immediately. The script retrieves the �les base2_2.tgz and drivers.tgz from the internet, if
needed, and extracts the debian "base" root-�lesystem as well as the modconf package from drivers.tgz :

case $BASE_TGZ in

ftp:*|http:*)

file=$INSTALL_ROOT/${BASE_TGZ//*\//}

info "Retrieving baseX_Y.tgz ..."

wget -nv -P$INSTALL_ROOT/ $BASE_TGZ

info "Unpacking baseX_Y.tgz ..."

tar -C $INSTALL_ROOT -zxpf $file

rm -f $file

;;

*)

info "Unpacking baseX_Y.tgz ..."

tar -C $INSTALL_ROOT -zxpf $BASE_TGZ

;;

esac

...

tar zxOf $DRIVERS_TGZ ./modconf.tgz | tar -C $INSTALL_ROOT -xpz

4. Setting up the client's resources 13

...

Some scripts needed later on (like chroot_script), busybox sources, an apt-get con�guration �le (URL's of
available debian ftp-servers) and the resolv.conf are copied into the install-root. In order to avoid needless
modules probing, the switch_o� �le, containing the neccessary 'o�' lines for the disk-modules, is copied
to the etc/modutils directory. The modules.conf will be updated in the chroot_root.sh script. As a last
step, we link etc/mtab and etc/fstab to proc/mounts. This is neccessary, since these �les are required for
unmounting. Note: proc/mounts is not being mounted in the chroot environment, but it will be during the
installation (linuxrc script).

4.2.3 Installing additional packages

Now that the preliminaries have been dealt with, we can change the root directory to the install_root. This
step, made incorrectly, can damage your system. Thus, we decided to let the script perform this operation :

chroot $INSTALL_ROOT /bin/bash ${__chroot//*\//}

Once inside the install-root, the chroot_script.sh is executed. Note: you are in a debian system now - all
operations made herein are independent of your local linux distribution. For the next step you will need
internet access. As an alternative, a local (NFS) debian mirror can be mounted at "/debian".You can set
this option in the util.conf �le.

[x$APT_METHOD = xfile] &&

mount -n -t nfs -o ro $NFS_SERVER /debian

Apt-get will download and install the newest versions of some needed packages. In detail, we need :

• for compiling: make, g++

• for the miniroot: loadlin (for freeramdisk), ash

• for the installroot: cfengine, �le, perl-5.005, perl-5.005-debug, less, bootpc, rdate, dnsutils, strace
(debug)

Note: apt-get will show you all dependencies of these packages and ask for approval, so you can consider a
change in the PACKAGES variable. After the successful upgrade/installation of these packages, busybox
will be compiled. In order to avoid needless modules probing, we update the modules.conf �le and create an
empty modules.dep �le.

If everything went well, your install-root should be complete.

4.3 How to create the Initial RAM disk

Note: The initrd is independent of your linux distribution, since all needed �les, in particular libraries, are
copied from the Installroot. If you have not created it by now, you'd better return to the section 4.2 (How
to create install-root �lesystem).

4.3.1 ... and why do we need it ?

The initial RAM disk contains a minimal root �lesystem. It is used to mount the neccessary ressources from
the server. Furthermore, once the client is installed, it does not have to be rebooted - the root simply changes
from the initrd to the created one. Apart from the installation, it can be used conveniently as a boot- or
rescue-disk. Originally, the initrd has been designed to load additional modules during system startup, thus
making pcmcia-usage possible. Look out for this feature in a future release.

4. Setting up the client's resources 14

4.3.2 Customizing util.conf and mk_initrd

Edit the two �les util.conf and mk_initrd in this directory. Both contain numerous comments which should
explain in detail the options you are asked to set. You should look through util.conf and mk_initrd and
check the variable settings.

util.conf

This �le contains basic informations about your server and various �le locations.

mk_initrd

This script speci�es how your initial RAM disk will be built and what it will contain. In case you want
to use your initrd for other purposes than this installation, you should review the selections of /bin
�les.

4.3.3 Making the initrd (minimal root �le system)

When you are done customizing these to �les, su to root and run :

mk_initrd

This script creates the initial root �le system that will be mounted in a RAM disk. It works in four phases.
First it processes the util.conf and common.sh �les setting up variables and de�ning common functions.
Next, it creates a ramdisk, 10 MB in size, so you will propably have to set your ramdisk_size variable in
lilo's 'append' string (like append="ramdisk_size=10240").

vermeer[~]# dd if=/dev/zero of=/dev/ram bs=1k count=10240

10240+0 records in

10240+0 records out

We have �nally decided to use ext2 as its �lesystem, since minix and romfs has too many restrictions. The
RAM disk is formatted with mke2fs, using a 1024 inode ratio. In order to maintain maximum caompatibility,
all device �les are copied from the debian �lesystem to /dev, hence this inode ratio.

vermeer[~]# mke2fs -i 1024 -vm1 /dev/ram 10240

mke2fs 1.17, 26-Oct-1999 for EXT2 FS 0.5b, 95/08/09

Filesystem label=

OS type: Linux

Block size=1024 (log=0)

Fragment size=1024 (log=0)

1024 inodes, 1024 blocks

10 blocks (0.98%) reserved for the super user

First data block=1

1 block group

8192 blocks per group, 8192 fragments per group

1024 inodes per group

Writing inode tables: done

Writing superblocks and filesystem accounting information: done

As a next step, the formatted RAM disk is mounted and the directory and link structure is made:

4. Setting up the client's resources 15

vermeer[~]# mkdir -p $__mnt

vermeer[~]# mount -t ext2 /dev/ram $__mnt

...

Among the directories are /init_bin, /init_lib and /installroot. Note that the initrd is only a temporary
means. The links /bin, /lib are pointing to /init_bin, /init_lib; after the installroot is mounted, they will be
relinked to the new location (bin -> /installroot/bin, lib -> /installroot/lib). Note: the re-linking will take
place in the linuxrc script. Other links, like /etc, /sbin, /usr, point inside the installroot directory right from
the start (respectively installroot/etc, ..). As the client boots, it needs the �les /etc/mtab and /etc/fstab,
so we simply create them :

touch $__mnt/installroot/etc/{passwd,group,fstab}

After the installroot is mounted, all �les and directories previously located in /installroot will become
invisible as long as this �le system remains attached, thus all created links will point at valid (albeit readonly)
directories.

Next, the script copies binaries speci�ed in $__binaries to /init_bin. It looks for required libraries as well
as the adequate loaders and copies them to /init_lib. Note: the ldd command (checks the shared library
dependencies of a binary) is executed in a chroot (debian) environment of the installroot, so it is independent
of your local linux distribution:

chroot $INSTALL_ROOT ldd $bin | while read ...

Notes on BusyBox usage: When you create a link to BusyBox for the utility you wish to use, when BusyBox
is called using that link it will behave as if the command itself has been invoked. For example, entering

ln -s ./BusyBox ls

./ls

will cause BusyBox to behave as 'ls' (if the 'ls' command has been compiled into BusyBox).

The BusyBox multicall-library has been compiled during the installroot setup. One of the resulting �les -
busybox.links - contains all links corresponding to the functions compiled into BusyBox.

The script copies the busybox executable to /init_bin and creates all required links :

sed 's~.*/~~' $INSTALL_ROOT/$__busy_links |

while read link

do

ln -s busybox $link

done

where $__busy_links contains the location of busybox.links.

Finally, the neccessary scripts, in particular linuxrc, and dhclient con�guration �les are copied from the
installroot.

Now that the initrd has been created, we unmount the ramdisk, 'dd' it to a �le and �nally, compress it :

umount $__mnt

dd if=/dev/ram bs=1k count=10240 | gzip -v9 > $__target

mk_initrd will produce occasional messages showing what it is doing. Any errors should be prominent.

When you are satis�ed with the output from mk_initrd, create an appropriate bootdisk. Refer to section
5.1 (Booting from �oppy) for further details.

5. How the client boots 16

4.3.4 Benediction

You are done. Try to boot your client using your favourite method (lilo, syslinux, pxelinux, netboot etc.). If
all has gone well, the linuxrc script starts.

4.3.5 ...and what does the linuxrc script do anyway?

You should see :

starting NAIS (initrd.gz) ...

Linuxrc performs only a few tasks:

• the dhclient receives information from a dhcp server: it sets the NAIS_SERVER, NAIS_PATH,
NAIS_ROOTPATH variables accordingly to the available network host and the appropriate direc-
tories (I: mounting NAIS ...).

• the remote /nais and /installroot directories are being mounted on their local counterparts. Then we
relink the /bin and /lib directories (bin->init_bin, lib->init_lib) to the /installroot (I: changing

lib ...).

• at this point, the actual install script starts ($INIT_SCRIPT).

Finally, when linuxrc and all subsequently launched (forked) scripts terminate, the client's newly made root
�le system is mounted and the initrd is moved to /initrd.

5 How the client boots

There are two methods for booting the client. The computer can boot from its network interface card (NIC)
to receive the boot images via DHCP/TFTP or a suitable kernel as well as an initrd image is loaded from a
�oppy. Please refer to section 4 (Setting up the client's resources) for details on how an appropriate initial
ramdisk image is built and what is required of a feasible client-kernel.

Throughout this section let initrd.gz denote a gzipped initrd image and bzImage a client-kernel, just like
mentioned above.

5.1 Booting from �oppy

For testing/rescue purposes or because your NIC does not have a PROM (yet) you can build a boot
�oppy to use with NAIS. We will only describe how lilo(8) and syslinux may be used to achieve
this. For detailed information see initrd.txt <http://www.kernelnotes.org/doc22/initrd.txt> ,
ramdisk.txt <http://www.kernelnotes.org/doc22/ramdisk.txt> , kernel-parameters.txt

<http://www.kernelnotes.org/doc22/kernel-parameters.txt> , and the Bootdisk-HOWTO
<http://linuxdoc.org/HOWTO/Bootdisk-HOWTO/> as well as the documentation contained within
both packages.

5.1.1 syslinux

This Linux boot loader operates o� an MS-DOS r©/Windows r© FAT �lesystem. This makes it rather easy to
maintain your boot �oppies using standard MS-DOS r© tools. Its second feature, which is more important
to us, is the usability for booting Linux of a network server. To create a boot �oppy type:

5. How the client boots 17

vermeer[/tmp]# superformat /dev/fd0u1440

vermeer[/tmp]# mount /dev/fd0u1440 /floppy/

vermeer[/tmp]# cp bzImage initrd.gz /floppy/

vermeer[/tmp]# cat <<EOF > /floppy/syslinux.cfg

? DEFAULT bzImage

? TIMEOUT 0

? APPEND $options

? EOF

vermeer[/tmp]# umount /floppy/

vermeer[/tmp]# syslinux /dev/fd0u1440

Here $options means the kernel parameters that are passed to the kernel command line. In the above exam-
ple we used options="rw ramdisk_size=10240 initrd=initrd.gz reboot=warm vga=normal" . NOTE:
All kernel parameters are case sensitive and the value of "ramdisk_size" MUST correspond to the size of
your initrd. See section 4.3 (How to create the Initial RAM disk) for details.

5.1.2 lilo

To build a lilo boot disk that contains a bzImage and an initrd.gz you have to supply a valid lilo.conf:

boot = /dev/fd0u1440

install = /boot/boot.b # from your lilo-package

map = /boot/map # created when running /sbin/lilo

backup = /dev/null

compact

read-write

vga = normal

image = bzImage

label = NAIS

root = /dev/fd0u1440

initrd = initrd.gz

append = "ramdisk=10240 reboot=warm"

Now you can build your boot �oppy by typing:

vermeer[/tmp]# mke2fs -i 8192 -m 0 /dev/fd0u1440

vermeer[/tmp]# mount /dev/fd0u1440 /floppy/

vermeer[/tmp]# rm -rf /floppy/lost+found/

vermeer[/tmp]# mkdir /floppy/{dev,boot}

vermeer[/tmp]# cp -a /dev/{fd0u1440,null} /floppy/dev/

vermeer[/tmp]# cp /boot/boot.b /floppy/boot/

vermeer[/tmp]# cp initrd.gz bzImage lilo.conf /floppy/

vermeer[/tmp]# lilo -v -C lilo.conf -r /floppy/

5.2 Booting from network card

For administrative purposes, booting from network card (NIC) is much more suitable than booting from
�oppy. In order to use this boot method, the client's NIC needs a boot PROM that is able to communicate
with a DHCP server to receive communication-related con�guration parameters such as network addresses
and which is capable of communicating with a TFTP-server to get a boot image. Furthermore, it must be

5. How the client boots 18

guaranteed that the transmitted boot image is executed properly in terms of what the boot PROM expects
in a boot image.

Note: All described netbooting methods require that your DHCP server is properly set up. Please see section
3 (Setting up the server) for details.

5.2.1 etherboot and netboot

etherboot <http://etherboot.sourceforge.net/> and netboot <http://www.han.de/�gero/netboot.html>

are capable of creating a PROM binary (which must still be programmed onto a PROM) and a corresponding
"tagged" TFTP boot image which includes a bzImage (and an optional initrd.gz). Some tools exist that
help test a boot PROM image, in fact the support utilities are pretty much common to both etherboot and
netboot.

The advantage of netboot is its ability to emulate just enough of a DOS environment such that unmodi�ed DOS

packet driver binaries � these are usually provided with the NIC � can be used for building a boot PROM.
Thus, netboot supports a wider range of NICs. etherboot, on the other hand, creates smaller boot PROM im-
ages; the compressed versions will �t in 8 KB size (which all NIC's should support). Also etherboot does auto-
probing of the hardware addresses while netboot only does autoprobing as long as the packet driver supports
this feature. However, if you choose to use either one of these tools you should de�nitly read the documen-
tation or take a look at the mailinglist <http://www.han.de/�gero/netboot/archive/maillist.html> ;
the Diskless-HOWTO <http://linuxdoc.org/HOWTO/Diskless-HOWTO.html> might de�nitely be helpful
as well. Here we will only give an example to get the idea how it works.

netboot You probably do not need to compile netboot yourself, an apt-get install netboot or its
equivalent for a rpm-based system should be su�cient. Once you have netboot running you have to get a
working packet driver for the client's NIC. This MS-DOS r©-program usually comes with your NIC, look at
netboot's homepage for some links. The packet driver must �t into 32KB or 64KB to be programmed onto
a PROM. If the driver is too big try using programs such as pkzip to decrease the size of the executable.

If you have the packet driver you can build your PROM-image by typing makerom. You will be asked a
couple of questions, including where netboot can �nd your packet driver (e.g. 3c90xpd.com if you have a
3Com r© 3c90b) and the command line arguments (e.g. /I=96) for it. That means under DOS you would
simply type

A:\> 3c90xpd.com /I=96

to start the driver. This will create two �les, image.flo and another �le which is to be burned onto a
PROM. Testing the boot PROM is done with cat image.flo > /dev/fd0; you can use this �oppy to boot
your netbootable client from.

The next task is to take the bzImage and initrd.gz and to turn them into a tagged image. Such an image
has a special header that tells the network bootloader where the bytes go in memory and at what address
to start the program. To make a network bootable image type:

vermeer[/tmp]# mknbi-linux -x -i rom -k bzImage -r initrd.gz \

-a "ramdisk_size=10240" -o /tftpboot/clientnbi

Kernel image file name = bzImage

Output file name = /tftpboot/clientnbi

Ramdisk image file name = initrd.gz

Kernel command line = "auto rw root=/dev/nfs nfsroot=kernel \

nfsaddrs=rom ramdisk_size=10240"

5. How the client boots 19

vermeer[/tmp]# chmod a=r,u+w /tftpboot/clientnbi

Now a tagged image /tftpboot/clientnbi with the printed parameters was built. Most used options of
mknbi-linux(8) are obvious; -x means verbose and -i rom means all necessary ip addresses for NFS root
mounting will be determined at runtime using the BOOTP answer the bootrom got from the DHCP server.
Although NAIS does not use a NFS root this option might be useful for other purposes. Note that you can
use vendor tag 129 (option option-129) to pass additional parameters to the kernel at runtime. The string
value given with this tag is appended verbatim to the command line by the boot loader.

Test your PROM image i.e. boot your client from that �oppy:

Disk loader for net boot

Uncopressing... done

.

.

Found packet driver at int 60

Free memory: 31

.

.

BOOTP: Sending request (press ESC to abort): .ok

Local IP: 134.95.10.160

Server IP: 134.95.10.140 (134.95.10.140)

File name: /tftpboot/clientnbi

.

.

Uncompressing Linux... Ok, booting the kernel.

etherboot The same works for etherboot like this:

vermeer[/tmp]# echo "Not done yet ..."

Testing the boot PROM works for etherboot pretty much the same (although mknbi-linux for etherboot is
slightly di�erent).

vermeer[/tmp]# echo "Please refer to the documentation meanwhile."

5.2.2 Using PXE boot-PROMs

Another option to etherboot and netboot is to use a PXE-compliant boot PROM.
Di�erent from the method mentioned above, when using Intel r©'s PXE speci�cation
<http://developer.intel.com/ial/WfM/wfmspecs.htm> you have to distinguish two things. One is
to obtain a PXE boot PROM the other is two get a PXE remote-boot processor that is able to load a
bzImage and an initrd.gz.

There is a free tool that is oriented towards building PXE boot PROMs, nilo
<http://nilo.sourceforge.net/> . While this document is written, developments are made to the
NILO project. Thus, we have not tested it yet, but give it a try!

Since many proprietary solutions are based upon PXE, you should not have any problems �nding a suitable
boot PROM. Take a look at <http://etherboot.sourceforge.net/commercial.html> for a list of some
providers.

5. How the client boots 20

pxelinux pxelinux is a syslinux derivative which is still beta but works well for us. If you are already
familiar with syslinux you will see that pxelinux operates in many ways like syslinux does. Please see section
3 (Setting up the server) for details on setting up your DHCP server for pxelinux.

First copy pxelinux.bin from the syslinux distribution to /tftpboot/ on your TFTP server, as well as
bzImage and initrd.gz. Keep in mind that these �les must be world readable!

vermeer[~]# cp /usr/lib/syslinux/pxelinux.bin /tftpboot/

vermeer[~]# cp bzImage initrd.gz /tftpboot/

vermeer[~]# chmod a+r /tftpboot/*

Then, create the directory /tftpboot/pxelinux.cfg/ with read/write permissions for your ${NAIS_USER}:

vermeer[/tftpboot]# mkdir pxelinux.cfg

vermeer[/tftpboot]# chgrp linuxadm pxelinux.cfg/

vermeer[/tftpboot]# chmod a+r,g+w pxelinux.cfg/

The con�guration �les (the equivalent of syslinux.cfg) will reside in this directory. pxelinux, unlike
BpBatch, does not use additional vendor tags to determine which con�g �le to use. Instead, the con�guration
�le name depends on the IP address of the booting machine. pxelinux will search for its con�g �le on the
TFTP server in the following way:

First, it will search for the con�g �le using its own IP address in upper case hexadecimal, e.g. 134.95.10.160

→ /tftpboot/pxelinux.cfg/865F0AA0 . If that �le is not found, it will remove one hex digit and try again.
For 134.95.10.160 , if 865F0AA0 is not found, it will try 865F0AA, 865F0A, 865F0, 865F, 865, 86, and 8 in
that order. Finally, it will try looking for a �le named default (in lower case).

Note: This may not be as easily readable as host names, but using hexadecimal instead of deci-
mal makes it easy to group alike clients together. Our 16 cluster clients have IP addresses from
134.95.10.160 to 134.95.10.175 . Now, when we want to install the cluster, we simply delete/remove
/tftpboot/pxelinux/865F0AA? while 865F0AA is a con�g �le with defaults for installing a cluster client.
When a client's installation is �nished a �le like e.g. 865F0AA0A for 134.95.10.170 has to be created with
this client's settings.

If you have problems setting up your client to work with pxelinux you should try to create a boot �oppy
with syslinux, like in section 5.1 (Booting from �oppy). In most cases it should be su�cient to use exactly
the same con�g �le for pxelinux that you used for syslinux � in fact we do not know of any cases where it
did not work. ;)

vermeer[~]# mount /floppy/

vermeer[~]# cp /floppy/syslinux.cfg /tftpboot/pxelinux.cfg/865F0AA

vermeer[~]# chmod a+r /tftpboot/pxelinux.cfg/865F0AA

vermeer[~]# mv /tftpboot/pxelinux.cfg/865F0AA? /tmp/

In this case we use the seven-digit string 865F0AA, which to corresponds to hosts 134.95.10.160 - 175 , to
install the whole cluster.

Booting pxelinux successfully should look like this:

CLIENT MAC ADDR: 00 10 5A 25 CB 73

CLIENT IP: 134.95.10.160 MASK: 255.255.255.0 DHCP IP: 134.95.10.140

GATEWAY IP: 134.95.10.254

5. How the client boots 21

PXELINUX 1.48 1999-09-26 Copyright (C) 1994-1999 H. Peter Anvin

PXE entry point found (we hope) at 9D98:00F6

My IP address seems to be 865F0AA0

TFTP prefix: /tftpboot/

Trying to load: pxelinux.cfg/865F0AA0

Trying to load: pxelinux.cfg/865F0AA

Loading bzImage...........

Loading initrd.gz.............

Ready to start kernel...

Uncompressing Linux... Ok, booting the kernel.

BpBatch BpBatch is a non-free remote-boot processor that is free for personal use. This tool can perform
a large variety of actions on a computer at boot-time before any operating system operation has started.

You have to set some vendor tags to make BpBatch work. Please see section 3 (Setting up the server) for
all details; BpBatch's webpage BpBatch Forum <http://www.bpbatch.org/forum/> is also helpful as well
the Remote-Boot mini-HOWTO <http://cui.unige.ch/info/pc/remote-boot/howto.html> .

First copy bpbatch.P (we call it bpbatch), bpbatch.ovl and bpbatch.hlp from the BpBatch distribution
<http://www.bpbatch.org/downloads/bpb-exe.tar.gz> to /tftpboot/ on your TFTP server, as well as
bzImage and initrd.gz. Please check at all times that the required �les in /tftpboot/ are world readable!

vermeer[/tmp/bpb]# tar xfz /files/install/tars/bpb-exe.tar.gz

vermeer[/tmp/bpb]# cp bpbatch.P /tftpboot/bpbatch

vermeer[/tmp/bpb]# cp bpbatch.ovl bpbatch.hlp /tftpboot/

vermeer[/tmp/bpb]# chmod a+r-w /tftpboot/bpbatch* /tftpboot/{bzImage,initrd.gz}

The role of the DHCP server is to give the client an IP address and to make it load the �le named bpbatch

from the TFTP server. Thus add an entry in the DHCP con�guration �le for your client, with the boot �le
set to "bpbatch". De�ne a vendor option tag 135 (decimal) set to client (on the ISC DHCP server, this
is done by option option-135 "/tftpboot/client"). This batch script is interpreted an run by bpbatch,
you may change the value of option-135 to "-i" for interactive mode. NOTE: BpBatch always appends
the su�x .bpb to the basename of the value of option-135 (e.g. if you pass "/tftpboot/client.test" as
option, BpBatch will try to get client.bpb).

You have to provide two di�erent con�g �les for use with BpBatch. The �rst, e.g. client-install.bpb ,
will be used to install your client, the second, e.g. client-run.bpb , will be used for running the client.

A feasible client-install.bpb with "options"="auto rw root=/dev/nfs ramdisk_size=10240

reboot=warm vga=normal" looks like:

set cachenever="on"

LinuxBoot "bzImage" "options" "initrd.gz"

Please note that BpBatch's special variable called "CacheNever" should always be turned on since we do
not want BpBatch to try to cache the kernel image on the client's hard disk.

Now booting your client should look like this:

CLIENT MAC ADDR: 00 10 5A 25 CB 73

CLIENT IP: 134.95.10.160 MASK: 255.255.255.0 DHCP IP: 134.95.10.140

6. The installation process, 1st part 22

GATEWAY IP: 134.95.10.254

Starting BpBatch - PXE Boot ROM detected

BpBatch overlay loader v1.1 (Feb 11 2000)

Overlay file successfully loaded

.

.

- BootProm detected, using 134.95.10.140 as standard TFTP server

- Advanced Power Management V1.2

- Using up to 368K of conventional memory for the heap

- Using up to 15296K of extended memory

- Direct disk write access enabled

Linux 2.2.15 (roott@vermeer) #6 SMP Fri May 12 11:19:05 CEST 2000

Loading linux ramdisk....................

Loading...

Uncompressing Linux... Ok, booting the kernel.

6 The installation process, 1st part

This section will be covered in a future release... until then, refer to other sections as well as scripts, sorry.

7 The installation process, 2nd part

This section will be covered in a future release... until then, refer to other sections as well as scripts, sorry.

8 How con�guring works

This section will be covered in a future release... until then, refer to other sections as well as scripts, sorry.

9 Resources

• BusyBox <http://busybox.lineo.com/> . This utility combines tiny versions of many common UNIX
utilities into a single small executable. They contain fewer options than their full featured GNU
counterparts; however, the options that are included provide the expected functionality.

• Debian GNU/Linux base �le system - base2_2.tgz <ftp://ftp.debian.org/debian/dists/potato/main/disks-i386/>

This contains a complete minimalist Debian GNU/Linux installation, as well as resources required to
begin an installation of other needed utilities.

• Additional kernel modules and the modconf tool - drivers.tgz (same url as above)

• ash, Keith Almquist's tiny Bourne shell clone, used in the initrd. It is a version of sh with features
similar to those of the System V shell.

• freeramdisk, a utility that comes with the loadlin package. Since the initrd-image is created within
a RAM-disk device, this utility is needed to release this resource. Further information on load-
lin can be obtained at <ftp://elserv.ffm.fgan.de/pub/linux/loadlin-1.6/> A very simple ex-

10. Acknowledgements 23

ample for building an image for initrd, also including the program 'freeramdisk', can be found on
<ftp://elserv.ffm.fgan.de/pub/linux/loadlin-1.6/initrd-example.tgz>

• lilo, a boot loader, used to create �oppy disks for testing purposes. Current versions are available at
<ftp://lrcftp.epfl.ch/pub/people/almesber/lilo/>

• syslinux <ftp://ftp.kernel.org/pub/linux/utils/boot/syslinux/> , a linux boot loader, which
can operate o� an MS-DOS r©/Windows r© FAT �lesystem. Con�guration is largely equivalent to lilo's.
Even more important: it is similar to pxelinux.

• BpBatch <http://www.bpbatch.org/> is a non-free remote-boot processor that is free for personal
use. This tool can perform a large variety of actions on a computer at boot-time before any operating
system operation has started.

• netboot <http://www.han.de/�gero/netboot.html> is capable of creating a PROM binary (which
must still be programmed onto a PROM) and a corresponding "tagged" TFTP boot image which
includes a bzImage (and an optional initrd.gz).

• etherboot <http://etherboot.sourceforge.net/> , a netboot alternative.

• cfengine <http://www.iu.hioslo.no/cfengine> , a high level language designed for testing and con-
�guring unix-like systems attached to a TCP/IP network.

• perl - Practical Extraction and Report Language.

• TFTP server which supports DARPA Trivial File Transfer Protocol

• DHCP server and client, a boot protocol used to assign IP addresses, set up DNS nameservers. This
utility was written by Ted Lemon mellon@vix.com under a contract with Vixie Labs. Funding for this
project was provided by the Internet Software Consortium <http://www.isc.org/isc> .

10 Acknowledgements

The following people have contributed substantially to NAIS. If we missed somebody please send an email
to nais@informatik.uni-koeln.de and we will �x it:

Not done yet ;)

11 Disclaimer and Copyright

This document may be distributed and modi�ed under the terms of the GNU General Public License.

c© 2000 Mattias Gärtner, Lech Nieroda and Jens Rühmkorf.

This manual is free software; you may redistribute it and/or modify it under the terms of the GNU General
Public License as published by the Free Software Foundation; either version 2, or (at your option) any later
version.

This manual is distributed in the hope that it will be useful, but without any warranty ; without even the
implied warranty of merchantability or �tness for a particular purpose. See the GNU General Public License
for more details.

A copy of the GNU General Public License is available as nais/doc/gpl.txt within the NAIS package
or on the World Wide Web at the GNU website <http://www.gnu.org/copyleft/gpl.html> . You can
also obtain it by writing to the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA
02111-1307, USA.

12. Glossary 24

We require that you properly attribute the authors of this document on any materials derived from this
document. If you modify and improve this document, we request that you notify the authors of this document
via nais@informatik.uni-koeln.de .

12 Glossary

Some commonly used abbreviations and their meanings:

ROM

ROM is "built-in" computer memory containing data that normally can only be read, not written to.
ROM contains the programming that allows your computer to be "booted up" or regenerated each
time you turn it on. Unlike a computer's random access memory (RAM), the data in ROM is not lost
when the computer power is turned o�. The ROM is sustained by a small long-life battery in your
computer.

PROM

PROM (programmable read-only memory) is read-only memory (ROM) that can be modi�ed once by
a user. PROM is a way of allowing a user to tailor a microcode program using a special machine called
a PROM programmer. This machine supplies an electrical current to speci�c cells in the ROM that
e�ectively blows a fuse in them. The process is known as burning the PROM. Since this process leaves
no margin for error, most ROM chips designed to be modi�ed by users use erasable programmable
read-only memory (EPROM) or electrically erasable programmable read-only memory (EEPROM).

EPROM

EPROM (erasable programmable read-only memory) is programmable read-only memory (PROM)
that can be erased and re-used. Erasure is caused by shining an intense ultraviolet light through a
window that is designed into the memory chip. (Although ordinary room lighting does not contain
enough ultraviolet light to cause erasure, bright sunlight can cause erasure. For this reason, the window
is usually covered with a label when not installed in the computer.)

EEPROM

EEPROM (electrically erasable programmable read-only memory) is user-modi�able read-only memory
(ROM) that can be erased and reprogrammed (written to) repeatedly through the application of higher
than normal electrical voltage. Unlike EPROM chips, EEPROMs do not need to be removed from the
computer to be modi�ed. However, an EEPROM chip has to be erased and reprogrammed in its
entirety, not selectively. It also has a limited life - that is, the number of times it can be reprogrammed
is limited to tens or hundreds of thousands of times. In an EEPROM that is frequently reprogrammed
while the computer is in use, the life of the EEPROM can be an important design consideration.

